Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38471013

RESUMO

RATIONALE: BMI is associated with COPD mortality, but the underlying mechanisms are unclear. The effect of genetic variants aggregated into a polygenic score may elucidate causal mechanisms and predict risk. OBJECTIVES: To examine the associations of genetically predicted BMI with all-cause and cause-specific mortality in COPD. METHODS: We developed a polygenic score for BMI (PGSBMI) and tested for associations of the PGSBMI with all-cause, respiratory, and cardiovascular mortality in participants with COPD from the COPDGene, ECLIPSE, and Framingham Heart studies. We calculated the difference between measured BMI and PGS-predicted BMI (BMIdiff) and categorized participants into groups of discordantly low (BMIdiff < 20th percentile), concordant (BMIdiff between 20th - 80th percentile), and discordantly high (BMIdiff > 80th percentile) BMI. We applied Cox models, examined potential non-linear associations of the PGSBMI and BMIdiff with mortality, and summarized results with meta-analysis. MEASUREMENTS AND MAIN RESULTS: We observed significant non-linear associations of measured BMI and BMIdiff, but not PGSBMI, with all-cause mortality. In meta-analyses, a one standard deviation increase in the PGSBMI was associated with an increased hazard for cardiovascular mortality (HR=1.29, 95% CI=1.12-1.49), but not with respiratory or all-cause mortality. Compared to participants with concordant measured and genetically predicted BMI, those with discordantly low BMI had higher mortality risk for all-cause (HR=1.57, CI=1.41-1.74) and respiratory death (HR=2.01, CI=1.61-2.51). CONCLUSIONS: In people with COPD, higher genetically predicted BMI is associated with higher cardiovascular mortality but not respiratory mortality. Individuals with discordantly low BMI have higher all-cause and respiratory mortality compared to those with concordant BMI.

3.
Int J Chron Obstruct Pulmon Dis ; 17: 2957-2976, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36425061

RESUMO

Cachexia is a commonly observed but frequently neglected extra-pulmonary manifestation in patients with chronic obstructive pulmonary disease (COPD). Cachexia is a multifactorial syndrome characterized by severe loss of body weight, muscle, and fat, as well as increased protein catabolism. COPD cachexia places a high burden on patients (eg, increased mortality risk and disease burden, reduced exercise capacity and quality of life) and the healthcare system (eg, increased number, length, and cost of hospitalizations). The etiology of COPD cachexia involves a complex interplay of non-modifiable and modifiable factors (eg, smoking, hypoxemia, hypercapnia, physical inactivity, energy imbalance, and exacerbations). Addressing these modifiable factors is needed to prevent and treat COPD cachexia. Oral nutritional supplementation combined with exercise training should be the primary multimodal treatment approach. Adding a pharmacological agent might be considered in some, but not all, patients with COPD cachexia. Clinicians and researchers should use longitudinal measures (eg, weight loss, muscle mass loss) instead of cross-sectional measures (eg, low body mass index or fat-free mass index) where possible to evaluate patients with COPD cachexia. Lastly, in future research, more detailed phenotyping of cachectic patients to enable a better comparison of included patients between studies, prospective longitudinal studies, and more focus on the impact of exacerbations and the role of biomarkers in COPD cachexia, are highly recommended.


Assuntos
Caquexia , Doença Pulmonar Obstrutiva Crônica , Humanos , Caquexia/diagnóstico , Caquexia/etiologia , Caquexia/terapia , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/terapia , Qualidade de Vida , Estudos Transversais , Estudos Prospectivos , Redução de Peso
4.
Nat Genet ; 54(12): 1816-1826, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36411363

RESUMO

Osteoarthritis is a common progressive joint disease. As no effective medical interventions are available, osteoarthritis often progresses to the end stage, in which only surgical options such as total joint replacement are available. A more thorough understanding of genetic influences of osteoarthritis is essential to develop targeted personalized approaches to treatment, ideally long before the end stage is reached. To date, there have been no large multiancestry genetic studies of osteoarthritis. Here, we leveraged the unique resources of 484,374 participants in the Million Veteran Program and UK Biobank to address this gap. Analyses included participants of European, African, Asian and Hispanic descent. We discovered osteoarthritis-associated genetic variation at 10 loci and replicated findings from previous osteoarthritis studies. We also present evidence that some osteoarthritis-associated regions are robust to population ancestry. Drug repurposing analyses revealed enrichment of targets of several medication classes and provide potential insight into the etiology of beneficial effects of antiepileptics on osteoarthritis pain.


Assuntos
Bancos de Espécimes Biológicos , Loci Gênicos , Humanos , Reino Unido
5.
Cell Genom ; 2(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36119389

RESUMO

How race, ethnicity, and ancestry are used in genomic research has wide-ranging implications for how research is translated into clinical care and incorporated into public understanding. Correlation between race and genetic ancestry contributes to unresolved complexity for the scientific community, as illustrated by heterogeneous definitions and applications of these variables. Here, we offer commentary and recommendations on the use of race, ethnicity, and ancestry across the arc of genetic research, including data harmonization, analysis, and reporting. While informed by our experiences as researchers affiliated with the NHLBI Trans-Omics for Precision Medicine (TOPMed) program, these recommendations are applicable to basic and translational genomic research in diverse populations with genome-wide data. Moving forward, considerable collaborative effort will be required to ensure that race, ethnicity, and ancestry are described and used appropriately to generate scientific knowledge that yields broad and equitable benefit.

6.
Front Endocrinol (Lausanne) ; 13: 863893, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592775

RESUMO

Polygenic risk scores (PRSs) aggregate the effects of genetic variants across the genome and are used to predict risk of complex diseases, such as obesity. Current PRSs only include common variants (minor allele frequency (MAF) ≥1%), whereas the contribution of rare variants in PRSs to predict disease remains unknown. Here, we examine whether augmenting the standard common variant PRS (PRScommon) with a rare variant PRS (PRSrare) improves prediction of obesity. We used genome-wide genotyped and imputed data on 451,145 European-ancestry participants of the UK Biobank, as well as whole exome sequencing (WES) data on 184,385 participants. We performed single variant analyses (for both common and rare variants) and gene-based analyses (for rare variants) for association with BMI (kg/m2), obesity (BMI ≥ 30 kg/m2), and extreme obesity (BMI ≥ 40 kg/m2). We built PRSscommon and PRSsrare using a range of methods (Clumping+Thresholding [C+T], PRS-CS, lassosum, gene-burden test). We selected the best-performing PRSs and assessed their performance in 36,757 European-ancestry unrelated participants with whole genome sequencing (WGS) data from the Trans-Omics for Precision Medicine (TOPMed) program. The best-performing PRScommon explained 10.1% of variation in BMI, and 18.3% and 22.5% of the susceptibility to obesity and extreme obesity, respectively, whereas the best-performing PRSrare explained 1.49%, and 2.97% and 3.68%, respectively. The PRSrare was associated with an increased risk of obesity and extreme obesity (ORobesity = 1.37 per SDPRS, Pobesity = 1.7x10-85; ORextremeobesity = 1.55 per SDPRS, Pextremeobesity = 3.8x10-40), which was attenuated, after adjusting for PRScommon (ORobesity = 1.08 per SDPRS, Pobesity = 9.8x10-6; ORextremeobesity= 1.09 per SDPRS, Pextremeobesity = 0.02). When PRSrare and PRScommon are combined, the increase in explained variance attributed to PRSrare was small (incremental Nagelkerke R2 = 0.24% for obesity and 0.51% for extreme obesity). Consistently, combining PRSrare to PRScommon provided little improvement to the prediction of obesity (PRSrare AUC = 0.591; PRScommon AUC = 0.708; PRScombined AUC = 0.710). In summary, while rare variants show convincing association with BMI, obesity and extreme obesity, the PRSrare provides limited improvement over PRScommon in the prediction of obesity risk, based on these large populations.


Assuntos
Estudo de Associação Genômica Ampla , Obesidade , Frequência do Gene , Variação Genética , Humanos , Obesidade/epidemiologia , Obesidade/genética , Sequenciamento Completo do Genoma
7.
Nat Genet ; 54(3): 263-273, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35256806

RESUMO

Analyses of data from genome-wide association studies on unrelated individuals have shown that, for human traits and diseases, approximately one-third to two-thirds of heritability is captured by common SNPs. However, it is not known whether the remaining heritability is due to the imperfect tagging of causal variants by common SNPs, in particular whether the causal variants are rare, or whether it is overestimated due to bias in inference from pedigree data. Here we estimated heritability for height and body mass index (BMI) from whole-genome sequence data on 25,465 unrelated individuals of European ancestry. The estimated heritability was 0.68 (standard error 0.10) for height and 0.30 (standard error 0.10) for body mass index. Low minor allele frequency variants in low linkage disequilibrium (LD) with neighboring variants were enriched for heritability, to a greater extent for protein-altering variants, consistent with negative selection. Our results imply that rare variants, in particular those in regions of low linkage disequilibrium, are a major source of the still missing heritability of complex traits and disease.


Assuntos
Estudo de Associação Genômica Ampla , Herança Multifatorial , Alelos , Estudo de Associação Genômica Ampla/métodos , Humanos , Desequilíbrio de Ligação , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética
8.
Sci Rep ; 12(1): 3080, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197532

RESUMO

Fibrosis is a leading cause of morbidity and mortality worldwide. Although fibrosis may involve different organ systems, transforming growth factor-ß (TGFß) has been established as a master regulator of fibrosis across organs. Pirfenidone and Nintedanib are the only currently-approved drugs to treat fibrosis, specifically idiopathic pulmonary fibrosis, but their mechanisms of action remain poorly understood. To identify novel drug targets and uncover potential mechanisms by which these drugs attenuate fibrosis, we performed an integrative 'omics analysis of transcriptomic and proteomic responses to TGFß1-stimulated lung fibroblasts. Significant findings were annotated as associated with pirfenidone and nintedanib treatment in silico via Coremine. Integrative 'omics identified a co-expressed transcriptomic and proteomic module significantly correlated with TGFß1 treatment that was enriched (FDR-p = 0.04) with genes associated with pirfenidone and nintedanib treatment. While a subset of genes in this module have been implicated in fibrogenesis, several novel TGFß1 signaling targets were identified. Specifically, four genes (BASP1, HSD17B6, CDH11, and TNS1) have been associated with pirfenidone, while five genes (CLINT1, CADM1, MTDH, SYDE1, and MCTS1) have been associated with nintedanib, and MYDGF has been implicated with treatment using both drugs. Using the Clue Drug Repurposing Hub, succinic acid was highlighted as a metabolite regulated by the protein encoded by HSD17B6. This study provides new insights into the anti-fibrotic actions of pirfenidone and nintedanib and identifies novel targets for future mechanistic studies.


Assuntos
Antifibróticos/farmacologia , Biologia Computacional/métodos , Proteínas da Matriz Extracelular/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Indóis/farmacologia , Piridonas/farmacologia , Fator de Crescimento Transformador beta/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Antifibróticos/uso terapêutico , Caderinas/genética , Caderinas/metabolismo , Molécula 1 de Adesão Celular/genética , Molécula 1 de Adesão Celular/metabolismo , Feminino , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Indóis/uso terapêutico , Interleucinas/genética , Interleucinas/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Piridonas/uso terapêutico , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Tensinas/genética , Tensinas/metabolismo
9.
Circ Genom Precis Med ; 15(1): e003468, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35089798

RESUMO

BACKGROUND: Black individuals have high incident diabetes risk, despite having paradoxically lower triglyceride and higher HDL (high-density lipoprotein) cholesterol levels. The basis of this is poorly understood. We evaluated the participants of SPRINT (Systolic Blood Pressure Intervention Trial) to assess the association of estimated European genetic ancestry with the risk of incident diabetes in self-identified Black individuals. METHODS: Self-identified non-Hispanic Black SPRINT participants free of diabetes at baseline were included. Black participants were stratified into tertiles (T1-T3) of European ancestry proportions estimated using 106 biallelic ancestry informative genetic markers. The multivariable-adjusted association of European ancestry proportion with indices of baseline metabolic syndrome (ie, fasting plasma glucose, triglycerides, HDL cholesterol, body mass index, and blood pressure) was assessed. Multivariable-adjusted Cox regression determined the risk of incident diabetes (fasting plasma glucose ≥126 mg/dL or self-reported diabetes treatment) across tertiles of European ancestry proportion. RESULTS: Among 2466 Black SPRINT participants, a higher European ancestry proportion was independently associated with higher baseline triglyceride and lower HDL cholesterol levels (P<0.001 for both). European ancestry proportion was not associated with baseline fasting plasma glucose, body mass index, and blood pressure (P>0.05). Compared with the first tertile, those in the second (hazard ratio, 0.64 [95% CI, 0.45-0.90]) and third tertiles (hazard ratio, 0.61 [95% CI, 0.44-0.89]) of the European ancestry proportion had a lower risk of incident diabetes. A 5% point higher European ancestry was associated with a 29% lower risk of incident diabetes (hazard ratio, 0.71 [95% CI, 0.55-0.93]). There was no evidence of a differential association between the European ancestry proportion tertiles and incident diabetes between those randomized to intensive versus standard blood pressure treatment. CONCLUSIONS: The higher risk of incident diabetes in Black individuals may have genetic determinants in addition to adverse social factors. Further research may help understand the interplay between biological and social determinants of cardiometabolic health in Black individuals. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01206062.


Assuntos
Glicemia , Diabetes Mellitus , Glicemia/metabolismo , Pressão Sanguínea/genética , HDL-Colesterol , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/genética , Humanos , Triglicerídeos
10.
J Cachexia Sarcopenia Muscle ; 12(6): 1803-1817, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34523824

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally. COPD patients with cachexia or weight loss have increased risk of death independent of body mass index (BMI) and lung function. We tested the hypothesis genetic variation is associated with weight loss in COPD using a genome-wide association study approach. METHODS: Participants with COPD (N = 4308) from three studies (COPDGene, ECLIPSE, and SPIROMICS) were analysed. Discovery analyses were performed in COPDGene with replication in SPIROMICS and ECLIPSE. In COPDGene, weight loss was defined as self-reported unintentional weight loss > 5% in the past year or low BMI (BMI < 20 kg/m2 ). In ECLIPSE and SPIROMICS, weight loss was calculated using available longitudinal visits. Stratified analyses were performed among African American (AA) and Non-Hispanic White (NHW) participants with COPD. Single variant and gene-based analyses were performed adjusting for confounders. Fine mapping was performed using a Bayesian approach integrating genetic association results with linkage disequilibrium and functional annotation. Significant gene networks were identified by integrating genetic regions associated with weight loss with skeletal muscle protein-protein interaction (PPI) data. RESULTS: At the single variant level, only the rs35368512 variant, intergenic to GRXCR1 and LINC02383, was associated with weight loss (odds ratio = 3.6, 95% confidence interval = 2.3-5.6, P = 3.2 × 10-8 ) among AA COPD participants in COPDGene. At the gene level in COPDGene, EFNA2 and BAIAP2 were significantly associated with weight loss in AA and NHW COPD participants, respectively. The EFNA2 association replicated among AA from SPIROMICS (P = 0.0014), whereas the BAIAP2 association replicated in NHW from ECLIPSE (P = 0.025). The EFNA2 gene encodes the membrane-bound protein ephrin-A2 involved in the regulation of developmental processes and adult tissue homeostasis such as skeletal muscle. The BAIAP2 gene encodes the insulin-responsive protein of mass 53 kD (IRSp53), a negative regulator of myogenic differentiation. Integration of the gene-based findings participants with PPI data revealed networks of genes involved in pathways such as Rho and synapse signalling. CONCLUSIONS: The EFNA2 and BAIAP2 genes were significantly associated with weight loss in COPD participants. Collectively, the integrative network analyses indicated genetic variation associated with weight loss in COPD may influence skeletal muscle regeneration and tissue remodelling.


Assuntos
Estudo de Associação Genômica Ampla , Doença Pulmonar Obstrutiva Crônica , Adulto , Teorema de Bayes , Variação Genética , Humanos , Músculo Esquelético , Proteínas do Tecido Nervoso , Doença Pulmonar Obstrutiva Crônica/genética , Regeneração , Redução de Peso/genética
11.
Genome Med ; 13(1): 66, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883027

RESUMO

BACKGROUND: The large airway epithelial barrier provides one of the first lines of defense against respiratory viruses, including SARS-CoV-2 that causes COVID-19. Substantial inter-individual variability in individual disease courses is hypothesized to be partially mediated by the differential regulation of the genes that interact with the SARS-CoV-2 virus or are involved in the subsequent host response. Here, we comprehensively investigated non-genetic and genetic factors influencing COVID-19-relevant bronchial epithelial gene expression. METHODS: We analyzed RNA-sequencing data from bronchial epithelial brushings obtained from uninfected individuals. We related ACE2 gene expression to host and environmental factors in the SPIROMICS cohort of smokers with and without chronic obstructive pulmonary disease (COPD) and replicated these associations in two asthma cohorts, SARP and MAST. To identify airway biology beyond ACE2 binding that may contribute to increased susceptibility, we used gene set enrichment analyses to determine if gene expression changes indicative of a suppressed airway immune response observed early in SARS-CoV-2 infection are also observed in association with host factors. To identify host genetic variants affecting COVID-19 susceptibility in SPIROMICS, we performed expression quantitative trait (eQTL) mapping and investigated the phenotypic associations of the eQTL variants. RESULTS: We found that ACE2 expression was higher in relation to active smoking, obesity, and hypertension that are known risk factors of COVID-19 severity, while an association with interferon-related inflammation was driven by the truncated, non-binding ACE2 isoform. We discovered that expression patterns of a suppressed airway immune response to early SARS-CoV-2 infection, compared to other viruses, are similar to patterns associated with obesity, hypertension, and cardiovascular disease, which may thus contribute to a COVID-19-susceptible airway environment. eQTL mapping identified regulatory variants for genes implicated in COVID-19, some of which had pheWAS evidence for their potential role in respiratory infections. CONCLUSIONS: These data provide evidence that clinically relevant variation in the expression of COVID-19-related genes is associated with host factors, environmental exposures, and likely host genetic variation.


Assuntos
Brônquios , COVID-19/genética , Mucosa Respiratória , SARS-CoV-2 , Adulto , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/genética , Asma/genética , COVID-19/imunologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/imunologia , Expressão Gênica , Variação Genética , Humanos , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/imunologia , Doença Pulmonar Obstrutiva Crônica/genética , Locos de Características Quantitativas , Fatores de Risco , Fumar/genética
12.
Thorax ; 76(6): 554-560, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33574123

RESUMO

OBJECTIVES: Muscle wasting is a recognised extra-pulmonary complication in chronic obstructive pulmonary disease and has been associated with increased risk of death. Acute respiratory exacerbations are associated with reduction of muscle function, but there is a paucity of data on their long-term effect. This study explores the relationship between acute respiratory exacerbations and long-term muscle loss using serial measurements of CT derived pectoralis muscle area (PMA). DESIGN AND SETTING: Participants were included from two prospective, longitudinal, observational, multicentre cohorts of ever-smokers with at least 10 pack-year history. PARTICIPANTS: The primary analysis included 1332 (of 2501) participants from Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) and 4384 (of 10 198) participants from Genetic Epidemiology of COPD (COPDGene) who had complete data from their baseline and follow-up visits. INTERVENTIONS: PMA was measured on chest CT scans at two timepoints. Self-reported exacerbation data were collected from participants in both studies through the use of periodic longitudinal surveys. MAIN OUTCOME MEASURES: Age-related and excess muscle loss over time. RESULTS: Age, sex, race and body mass index were associated with baseline PMA. Participants experienced age-related decline at the upper end of reported normal ranges. In ECLIPSE, the exacerbation rate over time was associated with an excess muscle area loss of 1.3% (95% CI 0.6 to 1.9, p<0.001) over 3 years and in COPDGene with an excess muscle area loss of 2.1% (95% CI 1.2 to 2.8, p<0.001) over 5 years. Excess muscle area decline was absent in 273 individuals who participated in pulmonary rehabilitation. CONCLUSIONS: Exacerbations are associated with accelerated skeletal muscle loss. Each annual exacerbation was associated with the equivalent of 6 months of age-expected decline in muscle mass. Ameliorating exacerbation-associated muscle loss represents an important therapeutic target.


Assuntos
Atrofia Muscular/etiologia , Vigilância da População , Doença Pulmonar Obstrutiva Crônica/complicações , Qualidade de Vida , Fumar/efeitos adversos , Idoso , Progressão da Doença , Feminino , Volume Expiratório Forçado/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia Muscular/fisiopatologia , Prognóstico , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X
13.
Eur Respir J ; 57(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32855217

RESUMO

Most children diagnosed with asthma have respiratory symptoms such as cough, dyspnoea and wheezing, which are also important markers of overall respiratory function. A decade of genome-wide association studies (GWAS) have investigated genetic susceptibility to asthma itself, but few have focused on important respiratory symptoms that characterise childhood asthma.Using whole-genome sequencing (WGS) data for 894 asthmatic trios from a Costa Rican cohort, we performed family-based association tests (FBATs) to assess the association between genetic variants and multiple asthma-relevant respiratory phenotypes: cough, phlegm, wheezing, exertional dyspnoea and exertional chest tightness. We tested whether genome-wide significant associations were replicated in two additional studies: 1) 286 asthmatic trios from the Childhood Asthma Management Program (CAMP), and 2) 2691 African American current or former smokers from the COPDGene study.In the 894 Costa Rican trios, we identified a genome-wide significant association (p=2.16×10-9) between exertional dyspnoea and the single nucleotide polymorphism (SNP) rs10165869, located on chromosome 2q37.3, that was replicated in the CAMP cohort (p=0.023) with the same direction of association (combined p=3.28×10-10). This association was not found in the African American participants from COPDGene. We also found suggestive evidence for an association between SNP rs10165869 and the atypical chemokine receptor 3 (ACKR3).Our finding encourages the secondary association analysis of a wider range of phenotypes that characterise respiratory symptoms in other airway diseases/studies.


Assuntos
Asma , Estudo de Associação Genômica Ampla , Asma/complicações , Asma/genética , Criança , Dispneia/genética , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único
14.
Front Physiol ; 11: 653, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625117

RESUMO

Parkinson's disease (PD) is the most common motor neurodegenerative disease, and neuromuscular function deficits associated with PD contribute to disability. Targeting these symptoms, our laboratory has previously evaluated 16-week high-intensity resistance exercise as rehabilitative training (RT) in individuals with PD. We reported significant improvements in muscle mass, neuromuscular function (strength, power, and motor unit activation), indices of neuromuscular junction integrity, total and motor scores on the unified Parkinson's disease rating scale (UPDRS), and total and sub-scores on the 39-item PD Quality of Life Questionnaire (PDQ-39), supporting the use of RT to reverse symptoms. Our objective was to identify transcriptional networks that may contribute to RT-induced neuromuscular remodeling in PD. We generated transcriptome-wide skeletal muscle RNA-sequencing in 5 participants with PD [4M/1F, 67 ± 2 years, Hoehn and Yahr stages 2 (n = 3) and 3 (n = 2)] before and after 16-week high intensity RT to identify transcriptional networks that may in part underpin RT-induced neuromuscular remodeling in PD. Following RT, 304 genes were significantly upregulated, notably related to remodeling and nervous system/muscle development. Additionally, 402 genes, primarily negative regulators of muscle adaptation, were downregulated. We applied the recently developed Pathway-Level Information ExtractoR (PLIER) method to reveal coordinated gene programs (as latent variables, LVs) that differed in skeletal muscle among young (YA) and old (OA) healthy adults and PD (n = 12 per cohort) at baseline and in PD pre- vs. post-RT. Notably, one LV associated with angiogenesis, axon guidance, and muscle remodeling was significantly lower in PD than YA at baseline and was significantly increased by exercise. A different LV annotated to denervation, autophagy, and apoptosis was increased in both PD and OA relative to YA and was also reduced by 16-week RT in PD. Thus, this analysis identified two novel skeletal muscle transcriptional programs that are dysregulated by PD and aging, respectively. Notably, RT has a normalizing effect on both programs in individuals with PD. These results identify potential molecular transducers of the RT-induced improvements in neuromuscular remodeling and motor function that may aid in optimizing exercise rehabilitation strategies for individuals with PD.

15.
Respir Res ; 21(1): 100, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32354332

RESUMO

INTRODUCTION: Cachexia contributes to increased mortality and reduced quality of life in Chronic Obstructive Pulmonary Disease (COPD) and may be associated with underlying gene expression changes. Our goal was to identify differential gene expression signatures associated with COPD cachexia in current and former smokers. METHODS: We analyzed whole-blood gene expression data from participants with COPD in a discovery cohort (COPDGene, N = 400) and assessed replication (ECLIPSE, N = 114). To approximate the consensus definition using available criteria, cachexia was defined as weight-loss > 5% in the past 12 months or low body mass index (BMI) (< 20 kg/m2) and 1/3 criteria: decreased muscle strength (six-minute walk distance < 350 m), anemia (hemoglobin < 12 g/dl), and low fat-free mass index (FFMI) (< 15 kg/m2 among women and < 17 kg/m2 among men) in COPDGene. In ECLIPSE, cachexia was defined as weight-loss > 5% in the past 12 months or low BMI and 3/5 criteria: decreased muscle strength, anorexia, abnormal biochemistry (anemia or high c-reactive protein (> 5 mg/l)), fatigue, and low FFMI. Differential gene expression was assessed between cachectic and non-cachectic subjects, adjusting for age, sex, white blood cell counts, and technical covariates. Gene set enrichment analysis was performed using MSigDB. RESULTS: The prevalence of COPD cachexia was 13.7% in COPDGene and 7.9% in ECLIPSE. Fourteen genes were differentially downregulated in cachectic versus non-cachectic COPD patients in COPDGene (FDR < 0.05) and ECLIPSE (FDR < 0.05). DISCUSSION: Several replicated genes regulating heme metabolism were downregulated among participants with COPD cachexia. Impaired heme biosynthesis may contribute to cachexia development through free-iron buildup and oxidative tissue damage.


Assuntos
Caquexia/genética , Caquexia/metabolismo , Heme/genética , Heme/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Idoso , Idoso de 80 Anos ou mais , Caquexia/epidemiologia , Estudos de Coortes , Regulação para Baixo/fisiologia , Feminino , Seguimentos , Estudo de Associação Genômica Ampla/métodos , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/epidemiologia
16.
J Appl Physiol (1985) ; 128(2): 229-240, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31829804

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder impacting cognition, movement, and quality of life in >10 million individuals worldwide. We recently characterized and quantified a skeletal muscle pathology in PD represented by exaggerated type I myofiber grouping presumed to result from denervation-reinnervation processes. Our previous findings indicated that impaired neuromuscular junction integrity may be involved in type I grouping, which is associated with excessive motor unit activation during weight-bearing tasks. In this study, we performed transcriptional profiling to test the hypothesis that type I grouping severity would link to distinct gene expression networks. We generated transcriptome-wide poly(A) RNA-Seq data from skeletal muscle of individuals with PD [n = 12 (9 men, 3 women); 67 ± 2 yr], age- and sex-matched older adults (n = 12; 68 ± 2 yr), and sex-matched young adults (n = 12; 30 ± 1 yr). Differentially expressed genes were evaluated across cohorts. Weighted gene correlation network analysis (WGCNA) was performed to identify gene networks most correlated with indicators of abnormal type I grouping. Among coexpression networks mapping to phenotypes pathologically increased in PD muscle, one network was highly significantly correlated to type I myofiber group size and another to percentage of type I myofibers found in groups. Annotation of coexpressed networks revealed that type I grouping is associated with altered expression of genes involved in neural development, postsynaptic signaling, cell cycle regulation and cell survival, protein and energy metabolism, inflammation/immunity, and posttranscriptional regulation (microRNAs). These transcriptomic findings suggest that skeletal muscle may play an active role in signaling to promote myofiber survival, reinnervation, and remodeling, perhaps to an extreme in PD.NEW & NOTEWORTHY Despite our awareness of the impact of Parkinson's disease (PD) on motor function for over two centuries, limited attention has focused on skeletal muscle. We previously identified type I myofiber grouping, a novel indicator of muscle dysfunction in PD, presumably a result of heightened rates of denervation/reinnervation. Using transcriptional profiling to identify networks associated with this phenotype, we provide insight into potential mechanistic roles of skeletal muscle in signaling to promote its survival in PD.


Assuntos
Redes Reguladoras de Genes , Fibras Musculares de Contração Lenta/patologia , Músculo Esquelético/patologia , Junção Neuromuscular/fisiopatologia , Doença de Parkinson , Adulto , Idoso , Feminino , Humanos , Masculino , Doença de Parkinson/genética , Doença de Parkinson/patologia , Qualidade de Vida , RNA-Seq , Transcriptoma
17.
Sci Rep ; 9(1): 11367, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388056

RESUMO

Metabolomics is an emerging science that can inform pathogenic mechanisms behind clinical phenotypes in COPD. We aimed to understand disturbances in the serum metabolome associated with respiratory outcomes in ever-smokers from the SPIROMICS cohort. We measured 27 serum metabolites, mostly amino acids, by 1H-nuclear magnetic resonance spectroscopy in 157 white ever-smokers with and without COPD. We tested the association between log-transformed metabolite concentrations and one-year incidence of respiratory exacerbations after adjusting for age, sex, current smoking, body mass index, diabetes, inhaled or oral corticosteroid use, study site and clinical predictors of exacerbations, including FEV1% predicted and history of exacerbations. The mean age of participants was 53.7 years and 58% had COPD. Lower concentrations of serum amino acids were independently associated with 1-year incidence of respiratory exacerbations, including tryptophan (ß = -4.1, 95% CI [-7.0; -1.1], p = 0.007) and the branched-chain amino acids (leucine: ß = -6.0, 95% CI [-9.5; -2.4], p = 0.001; isoleucine: ß = -5.2, 95% CI [-8.6; -1.8], p = 0.003; valine: ß = -4.1, 95% CI [-6.9; -1.4], p = 0.003). Tryptophan concentration was inversely associated with the blood neutrophil-to-lymphocyte ratio (p = 0.03) and the BODE index (p = 0.03). Reduced serum amino acid concentrations in ever-smokers with and without COPD are associated with an increased incidence of respiratory exacerbations.


Assuntos
Aminoácidos/sangue , Doença Pulmonar Obstrutiva Crônica/sangue , Fumantes , Feminino , Humanos , Isoleucina/sangue , Leucina/sangue , Masculino , Metabolômica , Pessoa de Meia-Idade , Avaliação de Resultados da Assistência ao Paciente , Espectroscopia de Prótons por Ressonância Magnética , Triptofano/sangue , Valina/sangue
18.
Respir Res ; 20(1): 100, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118043

RESUMO

BACKGROUND: Cachexia is associated with increased mortality risk among chronic obstructive pulmonary disease (COPD) patients. However, low body mass index (BMI) as opposed to cachexia is often used, particularly when calculating the BODE (BMI, Obstruction, Dyspnea and Exercise) index. For this reason, we examined mortality using a consensus definition and a weight-loss definition of cachexia among COPD cases and compared two new COPD severity indices with BODE. METHODS: In the current report, the consensus definition for cachexia incorporated weight-loss > 5% in 12-months or low BMI in addition to 3/5 of decreased muscle strength, fatigue, anorexia, low FFMI and inflammation. The weight-loss definition incorporated weight-loss > 5% or weight-loss > 2% (if low BMI) in 12-months. The low BMI component in BODE was replaced with the consensus definition to create the CODE (Consensus cachexia, Obstruction, Dyspnea and Exercise) index and the weight-loss definition to create the WODE (Weight loss, Obstruction, Dyspnea and Exercise) index. Mortality was assessed using Kaplan-Meier survival and Cox Regression. Performance of models was compared using C-statistics. RESULTS: Among 1483 COPD cases, the prevalences of cachexia by the consensus and weight-loss definitions were 4.7 and 10.4%, respectively. Cachectic patients had a greater than three-fold increased mortality by either the consensus or the weight-loss definition of cachexia independent of BMI and lung function. The CODE index predicted mortality slightly more accurately than the BODE and WODE indices. CONCLUSIONS: Cachexia is associated with increased mortality among COPD patients. Monitoring cachexia using weight-loss criteria is relatively simple and predictive of mortality among COPD cases who may be missed if only low BMI is used.


Assuntos
Índice de Massa Corporal , Caquexia/diagnóstico , Caquexia/mortalidade , Consenso , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/mortalidade , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mortalidade/tendências , Prevalência , Redução de Peso/fisiologia
19.
Nicotine Tob Res ; 21(6): 714-722, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29767774

RESUMO

INTRODUCTION: Cigarette smoking is a major environmental risk factor for many diseases, including chronic obstructive pulmonary disease (COPD). There are shared genetic influences on cigarette smoking and COPD. Genetic risk factors for cigarette smoking in cohorts enriched for COPD are largely unknown. METHODS: We performed genome-wide association analyses for average cigarettes per day (CPD) across the Genetic Epidemiology of COPD (COPDGene) non-Hispanic white (NHW) (n = 6659) and African American (AA) (n = 3260), GenKOLS (the Genetics of Chronic Obstructive Lung Disease) (n = 1671), and ECLIPSE (the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) (n = 1942) cohorts. In addition, we performed exome array association analyses across the COPDGene NHW and AA cohorts. We considered analyses across the entire cohort and stratified by COPD case-control status. RESULTS: We identified genome-wide significant associations for CPD on chromosome 15q25 across all cohorts (lowest p = 1.78 × 10-15), except in the COPDGene AA cohort alone. Previously reported associations on chromosome 19 had suggestive and directionally consistent associations (RAB4, p = 1.95 × 10-6; CYP2A7, p = 7.50 × 10-5; CYP2B6, p = 4.04 × 10-4). When we stratified by COPD case-control status, single nucleotide polymorphisms on chromosome 15q25 were nominally associated with both NHW COPD cases (ß = 0.11, p = 5.58 × 10-4) and controls (ß = 0.12, p = 3.86 × 10-5) For the gene-based exome array association analysis of rare variants, there were no exome-wide significant associations. For these previously replicated associations, the most significant results were among COPDGene NHW subjects for CYP2A7 (p = 5.2 × 10-4). CONCLUSIONS: In a large genome-wide association study of both common variants and a gene-based association of rare coding variants in ever-smokers, we found genome-wide significant associations on chromosome 15q25 with CPD for common variants, but not for rare coding variants. These results were directionally consistent among COPD cases and controls. IMPLICATIONS: We examined both common and rare coding variants associated with CPD in a large population of heavy smokers with and without COPD of NHW and AA descent. We replicated genome-wide significant associations on chromosome 15q25 with CPD for common variants among NHW subjects, but not for rare variants. We demonstrated for the first time that common variants on chromosome 15q25 associated with CPD are similar among COPD cases and controls. Previously reported associations on chromosome 19 showed suggestive and directionally consistent associations among common variants (RAB4, CYP2A7, and CYP2B6) and for rare variants (CYP2A7) among COPDGene NHW subjects. Although the genetic effect sizes for these single nucleotide polymorphisms on chromosome 15q25 are modest, we show that this creates a substantial smoking burden over the lifetime of a smoker.


Assuntos
Etnicidade/genética , Marcadores Genéticos , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Doença Pulmonar Obstrutiva Crônica/etiologia , Fumantes/estatística & dados numéricos , Fumar/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Hidrocarboneto de Aril Hidroxilases/genética , Estudos de Casos e Controles , Citocromo P-450 CYP2B6/genética , Família 2 do Citocromo P450/genética , Europa (Continente)/epidemiologia , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Prevalência , Prognóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Fumar/efeitos adversos , Fumar/epidemiologia , Estados Unidos/epidemiologia , Proteínas rab4 de Ligação ao GTP/genética
20.
Chronic Obstr Pulm Dis ; 5(2): 134-143, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30374451

RESUMO

Background: Adiponectin has been proposed as a biomarker of disease severity and progression in chronic obstructive pulmonary disease (COPD) and associated with spirometry-defined COPD and with computed tomography (CT)-measured emphysema. Increased adiponectin plays a role in other diseases including diabetes/metabolic syndrome, cardiovascular disease and osteoporosis. Previous studies of adiponectin and COPD have not assessed the relationship of adiponectin to airway disease in smokers and have not evaluated the effect of other comorbid diseases on the relationship of adiponectin and lung disease. We postulated that adiponectin levels would associate with both airway disease and emphysema in smokers with and without COPD, and further postulated that body composition and the comorbid diseases of osteoporosis, cardiovascular disease and diabetes might influence adiponectin levels. Methods: Current and former smokers from the COPD Genetic Epidemiology study (COPDGene) (n= 424) were assigned to 4 groups based on CT lung characteristics and volumetric Bone Density (vBMD). Emphysema (% low attenuation area at -950) and airway disease (Wall area %) were used to assess smoking-related lung disease (SRLD). Group 1) Normal Lung with Normal vBMD; Group 2) Normal Lung and Osteoporosis; Group 3) SRLD with Normal vBMD; Group 4) SRLD with Osteoporosis. Cardiovascular disease (CVD), diabetes, C-reactive protein (CRP) and T-cadherin (soluble receptor for adiponectin) levels were defined for each group. Body composition was derived from chest CT. Multivariable regression assessed effects of emphysema, wall area %, bone density, comorbid diseases and other key factors on log adiponectin. Results: Group 4, SRLD with Osteoporosis, had significantly higher adiponectin levels compared to other groups and the effect persisted in adjusted models. Systemic inflammation (by CRP) was associated with SRLD in Groups 3 and 4 but not with osteoporosis alone. In regression models, lower bone density and worse emphysema were associated with higher adiponectin. Airway disease was associated with higher adiponectin levels when T-cadherin was added to the model. Male gender, greater muscle and fat were associated with lower adiponectin. Conclusions: Adiponectin is increased with both airway disease and emphysema in smokers. Bone density, and fat and muscle composition are all significant factors predicting adiponectin that should be considered when it is used as a biomarker of COPD. Increased adiponectin from chronic inflammation may play a role in the progression of bone loss in COPD and other lung diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...